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Adv. Appl Prob. 11, 851-869 (1979) 
Printed in N. Ireland 

@ Applied Probability Trust 1979 

ON QUEUES IN DISCRETE REGENERATIVE 
ENVIRONMENTS, WITH APPLICATION TO THE 
SECOND OF TWO QUEUES IN SERIES 

K. BALAGOPAL,* Indian Statistical Institute, New Delhi 

Abstract 

Let U, be the time between the nth and (n + 1)th arrivals to a single-server 
queuing system, and V, the nth arrival's service time. There are quite a few 
models in which {U_, V,, n?1} is a regenerative sequence. In this paper, some 

light and heavy traffic limit theorems are proved solely under this assumption; 
some of the light traffic results, and all the heavy traffic results, are new for 
two such models treated earlier by the author; and all the results are new for 
the semi-Markov queuing model. 

In the last three sections, the results are applied to a single-server queue 
whose input is the output of a G/G/1 queue functioning in light traffic. 

DISCRETE-PARAMETER REGENERATIVE PROCESSES; IDLE TIME; WAITING TIME; DE- 

PARTURES; SERIES QUEUES; STRONG LIMIT AND CENTRAL LIMIT THEOREMS; LIGHT 

TRAFFIC AND HEAVY TRAFFIC LIMIT THEOREMS 

1. Introduction 

Queuing problems with non-stationary interarrival and service times have 
attracted much attention from analysts during the last decade and a half. Of 

particular theoretical interest are problems in which the variations in the arrival 
and service distributions are derived from some 'environmental' variations, 
which possess a manageable structure and take place (more or less) autonom- 

ously of the state of the system. The attractiveness of such problems stems as 
much from their mathematical tractability as their usefulness as models, and 
much work has been done on a variety of such problems. Instances, among 
single-server models, are the discrete Markovian environment models of Neuts 

[19] and others ([10], [11], [22], [1], [2], [29]); the continuous Markovian 
environment models of Neuts [20] and [28], [29], [21]; and what may be 
described as the 'additive' environment models of Grinstein and Rubinovitch 

[15] and Boxma [7]. 
As non-stationarity is a negative description, it is unlikely that such models 

can all be subsumed under a common theoretical head, but the search for a 
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852 K. BALAGOPAL 

common approach to structurally similar subclasses may be fruitful. We shall 
describe one such subclass here, which has a rather diverse representation, 
develop some results, mainly limit theorems, for it, and illustrate by applying 
the results to a series queuing system. 

2. Description and some examples 

Consider a single-counter queue which gives service on a first come first 
served basis. Let U, be the interarrival time between the nth and (n + 1)th 
arrivals; and V, the nth customer's service time. Suppose {to = 0; 

t,, 
n 

-0} 
is a 

discrete renewal process with strictly positive increments. We say that the 

system has a discrete regenerative environment if 

{ Un, V, n -ll} 

is a regenerative process with regeneration epochs {t7, n 
_ 

0}. By this we mean 

that, for any n 
_1, 

the post-t, process 

{U,,+i, V 
+t, 

j 
- 

1; t+i- t, j 
_ 

0} 

is independent of the pre-tn process 

(2.1) {U., V, jj!, t., n} 

and all the post-t, processes have the same law, for n 
_0. (This definition is 

not standard, but is convenient for our purpose; of course, we need not have 
taken {tR} to be a renewal process: that follows from the preceding definition.) 

For some applications (e.g. the semi-Markov queue; see below) it is impor- 
tant to restrict the last statement in (2.1) to n 

_1; i.e. to allow the process to be 

'delayed' (also 'general', cf. Smith [23]); but we shall not do so, for it makes no 
difference to our results, and only makes the proofs more messy. 

There is a variety of apparently very different models that admit such a 

regenerative environment. We shall describe three such models here, and 

interpret the subsequent results for them. Many of our results have not hitherto 
been given for two of them, viz. the replacement and breakdown models, and 
all are new for the third, the semi-Markov model. 

1. The semi-Markov model. This is a general version of the M/SM/1 model 
of Neuts and others, treated by Arjas [1], [2] and Takics [27]. There are a 
countable number of types of customers, collected into a set N. Arrivals take 

place in a single stream; J, denotes the type of the (n + 1)th arrival, and 

{Jo; U,, V,, J,, 
n-1} 

is a Markov renewal sequence. 
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On queues in discrete regenerative environments 853 

Fix a recurrent state ie N; and let t((i) be the epoch of nth entry of the 
Markov chain {J,} to state i. Then, from the strong Markov property, 
{ U,, V,, n ?1} is regenerative, with regeneration epochs {t (i)}. Observe that 
we have a family of regeneration epochs, one for each recurrent state i E N; by 
varying i, we may thus get information concerning customers of each type. 

2. A non-preemptive breakdown model. This model is treated in [4]. The 
service mechanism exhibits 'ageing', its failure time is counted only in terms of 
its busy time, and failure is non-preemptive, i.e., the service during which 
failure occurs is completed before repair is undertaken. Let V, now denote the 
so-called completion time of the nth customer, and suppose that the nth failure 
occurs during, or at the end of, the tith service. Then {U,, V,} is regenerative, 
with regeneration epochs {tj} (see [4] for details). 

3. A replacement model. This model [5] is complementary to the previous 
one. Here the service mechanism does not fail, but exhibits deterioration of 
efficiency, which is supposed to be reflected in varying service distributions. 
The first service has distribution B1, the second B2,... etc., until the t1th. At 
the end of the t1th service it is replaced by an identical machine, which repeats 
the performance. ti is the service at the end of which the nth replacement 
takes place. The probability law of {V,, tn} can be specified suitably so that (see 
[5]) {U,, V,} 

satisfies (2.1). 

3. Stability condition and some light traffic limit theorems 

Let 

X, = V,- U,, n 1, So = O, S, = S_-1 + X, n 1, 
tn t 

UL = 

Ui, Vn = V Vi, Xn = Vn- UL, n 1, 
t,_z+1 tt,_+1 

ao= O, an = an-1 +Xn n 
_1. 

We write Eu for 
E(U'), 

and similarly Ev and Ex. Now, suppose W, is the 
waiting time of the nth arrival. Then, as usual, 

(3.1) Wn+ 
= 

(Wn + X)+ 

(3.2) = S,- min (Si, -W1). 

Busy periods, idle periods, etc. are defined as usual. In particular, idle 
periods are defined so that they necessarily are of positive duration. Let E, 
denote the event that the nth customer ends a busy period. We say the system 
is stable iff P{E, i.o.} = 1. 
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854 K. BALAGOPAL 

We assume hereafter that qr = E(t, -t,-1), Eu, Ev, are all finite and that 

P(U,= V)< 1. 

Theorem 1. The system is stable iff Ex 
- 

0. 

Proof. As is well known, 

(3.3) 
En= 

{Sn <min (Si, 
- Wi) 

Since 
{Sn} 

is a regenerative sequence (e.g. Stidham [24]), 

(3.4) n-1Sn -- rl-lEx a.s. 

If Ex >0, this implies that S, - +oo a.s. and hence 
Sn, 

- W1 for all large 
enough n (a.s.) so that 

P{En only for a finite n} = 1. 

Suppose Ex <0. Then 
Sn 

- 
-oo; but, on the complement of 

{En i.o.}, {Sn} 
has a 

(a.s.) finite minimum, hence 
P{En i.o.} = 1. Lastly, let Ex = 0. Then the random 

walk 
{an} 

has zero mean, and hence (Chung and Fuchs [9]), lim infn," an = 
-0c, 

so that, a fortiori, lim 
infn,o S, = -oo a.s., which implies, as above, that a.s., En 

must happen infinitely often. 

Note that 
P{En i.o.} = 0 or 1, i.e., unlike the situation in general stationary 

environments (Loynes [18]) there is no quasi-stability here, though a regenera- 
tive environment is, in many ways, more complex. For instance, we do not (in 
general) have a limiting waiting-time distribution; but suppose Wn = W,+1, n e 
0. For the semi-Markov model, ti = ti(i) and since J, denotes the type of the 

(n +1)th arrival, {Vn} gives the waiting times of i-type customers. In the 
breakdown model, it gives the waiting times of the customers to take the first 
services after the successive repairs; in the replacement model, the waiting 
times of the customers to take the first services by the successive replacements. 
We shall now exhibit a limit for 

{Wn}. 
Let 

On = max (S?,1,- 
S,+i), 

n? 0. 

{0,, n _0} 
is an i.i.d. family of non-negative variates with 0 5 E(O,) - Eu + Ev < 

The next result is proved on the same lines as in [4], [5]. Let 4 denote 

convergence in distribution. 

Theorem 2. If 
Ex 

-, 
W0 

W +oo and if 
Ex <0, W -A 

sup__o 
(a, + 0,). The 

convergence is proper. 
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On queues in discrete regenerative environments 855 

This has some useful consequences. Index the successive arrivals as 1, 2..... 
Let D(t) denote the number of departures up to time t whose indices coincide 
with a regeneration epoch. For the semi-Markov model, it is (with a difference 
of at most unity) the number of i-type departures in time t; for the breakdown 
model, the number of breakdowns in time t, and for the replacement model, 
the number of replacements in time t. 

Let r2= Var (U'), and let F denote the standard normal distribution 
function. 

Theorem 3. t-Clf(t) -- min (E-1, EV1) a.s. and if E < 0, 0 < ru < c, then, 

P{(D(t) - tE-u) f- ucruEa/2t1/2} -1 (u), -oo < u < c. 

We need one lemma. Its proof may be found in [4]. 

Lemma 1. n-1 minoin Si --> min (0, q -1Ex) a.s. 

It is important that this is a purely analytical consequence of (3.4), i.e., it has 

nothing to do with the regenerative character of {U,, V,}. 

Proof of Theorem 3. Let D, denote the time of departure of the t?th arrival. 
Then 

t 
--1 

S= D u ,+ W+ 
(3.5) i=1 

j=1 

Now since 

(3.6) OV0 ( V', U, 

(3.7) n-1 Vt, n-1U, 
- 0 a.s. 

From (3.2) and Lemma 1, 

(3.8) n-1W, n-->•-Ex 
-min (0, l-lEx) = max (0, ,-'Ex) 

so that 

(3.9) n-il), -> Eu + max (0, Ex) = max (Eu, Ev). 

Since 0 - W, 5 WI,- XW , (3.6) and Theorem 2 imply that when Ex < 0, 

(3.10) n-1/2W AGO. 

Consequently, from (3.5) and the central limit theorem for the i.i.d. sequence 
{ U}, we get 

(3.11) P{D~ - nEU (= uon "/2} 
-- 

(u). 
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856 K. BALAGOPAL 

Since, clearly, 

(3.12) {D(t) - n} = 
{D, - t}, 

(3.9) and (3.11) imply the theorem, by a technique familiar from renewal 

theory (see Takics [25]). 

This result is new for the breakdown and replacement models. An evaluation 
of ac for those models may be found in [3]. 

Let I(t) denote the total server idle time in [0, t]. The quantity limit t-'I(t), 
the average server idle time, is important; its complement under unity is the 
utilization factor for the system. Loynes [18] has proved its existence for 

systems with stationary environments; we shall show that it exists also in the 

presence of regenerative environments, and proceed to obtain also a central 
limit theorem of the type proved by Hooke [16] for the GIG/1 model (see also 

Iglehart [17]). Let 

B= E(V- E 
EvU,)2, r2= Var (V ). 

Theorem 4. t-'I(t) ---> max (0, 1- E l1Ev) a.s. and if Ex <0, ru, v < 00 

P{(I(t) - t(1 - EI1Ev)) - 5uB1EU 1/2t2} -- )(U), -00 < U < 00. 

Proof. Let 

(3.13) N(t)=sup 
{n- 

:. 
Ui-t} 

j=1 

so that the number of arrivals up to time t is N(t)+ 1. Let 

N(t) 

s(t)= Y Ui. 
j=1 

Let W(t) be the virtual waiting time at t. Then 

(3.14) W(t) = (WN(t)+ + VN(t)+l -(t-s(t))). 

From (3.8), then, 

(3.15) t-'W(t) -->, Eul max (0, F-'Ex) = Eul max (0, Ex) 

and since 

N(t)+1 

(3.16) W(t)= Vi-t + I(t) 
i=1 

t-'I(t) --> E max (0, Ex)+1- -XEvE1 = max (0, 1-E _ IEv) a.s. 

Turning to the central limit theorem, let Ex <0 and consider (3.16). We 
need to show that t-1/2W(t) - 0 when ru, v < co. As the proof follows rather 
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On queues in discrete regenerative environments 857 

naturally from that of a later result, we shall defer it to the end of the next 
section. 

We may then concentrate on r(t)+ Vi-tE 1'Ev. Let 

N'(t) = sup n O: O? Uf t , t= O. 
j=1 

Then 

N(t)+ 1 N'(t) 

(3.17) C V,-tEu-'Ev 
= (Vj -E-1EvU) 

i=1 j=1 

N(t)+1 /N'(t) 

+ 1 Vi+EiEv U -t). 
tN'(t)+1 i=1 

The last term has a proper limiting distribution as t - c>, and hence goes 
stochastically to zero when normed by t1/2. For the second, consider that 

tN'(t)+ 1 N(t) + 1 - tN,(t) + 1 

so that 

N(t)+1 

0?-5 0 : V 5 
VWN'(t)+l 

tN,(t)+L 

and it is fairly easy to show, using the finiteness of oy, that 

(3.18) t-1/2 Vk'(t)+ -1 0, 

so that the second term may also be neglected. The summand of the first term 
has mean zero and finite variance 

B1. 
Using the convergence of t-'N'(t) to Ei1 

and the same technique as, e.g., in Chung [8], pp. 99-100 we may show that 

P (V; - EEvU)') 
_--Utl>/2B 

E/2 
'> 

1-(-u)=((u) 

which finishes the proof. 

Finally, let D(t) denote the number of departures from the system up to time 
t. Let 

B 2 = E(U'- l-'Eu(tn 
- 

tn_X))2 
2(2)= Var (t - t_,). 

Theorem 5. t-'D(t) -- -1 min (Ei1, Ev') a.s. and if Ex <0, Tru, o, (2) <00 

P{(D(t) - 
t'Efl) - urjE-3/2B2t 1/2}-* (u), -00< U 

<o. 
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858 K. BALAGOPAL 

Proof. Let D, be the time of departure of the nth customer. Then, 

n-1 

(3.19) D, = U + W,+ V, 
i=1 

so that, by (3.8), 

(3.20) n-'D, - 
rl-'Eu + max (0, l-'Ex))= =-1 max (Eu, Ev). 

For the central limit theorem, let Ex < 0. It will be shown later that when cu, 

crv<o, n-1/2 WnP> 0. Let 
h(n)=sup{m?-0:t,,,:n}, 

nn0O. Then since 0?5 

V,_5 V,(,)+, as in (3.18), we get 

(3.21) 
n-1/2V,- -P.0. 

The process {U,} obeys the central limit theorem: 

P U( - 
nU-n'EU ) ul'/2B2n } 

2 
(u) 

(using the non-negativity of U,, this may be deduced from a central limit 
theorem of Feller [13]; alternatively, a proof that does not require non- 

negativity can be given; see [4], Theorem 3). Hence 

(3.22) P{(D, - nrl-'Eu) 5 ul-lB2n 1/2} 1 Q 4(u). 

Since {D(t) W n} = {D, 5 t}, (3.20) and (3.22) imply the theorem, as in Theorem 
3. 

The central limit results of the last two theorems are new for the breakdown 
and replacement models. An evaluation of B1 and B2 may be found in [3]. 

It is worth mentioning that (3.18) does not really require finiteness of au; 
that was used only to simplify the proof, since it is anyhow required elsewhere 
in the theorem. The same comment holds for (3.21). 

4. Some heavy traffic limit theorems 

First suppose Ex > 0, i.e., the traffic is strictly heavy. Then the total server 
idle time 

(4.1) lim I(t) < o a.s. 
t-30-oo 

This follows from the definition of stability, and Theorem 1. Alternatively, 

lim I(t) = - inf (S, - W1) < x a.s. 
t---~n 1 
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On queues in discrete regenerative environments 859 

Recall the balance equation (3.16): 
N(t)+1 

(t) = • 
•-t 

+ I(t). 
j=1 

In Theorem 4, we showed that t-1/2W(t) O, and analysed ~N(t)+l Vi-t to 

get a central limit theorem for I(t). Since (4.1) easily implies that t-1/21(t) 0 

(a.s., in fact), we may repeat the steps therein to get the following theorem. 

Theorem 6. If Ex > 0, O < ru, rv< oo, 

P{(W(t) - 
t(Eu'Ev 

- 1)) : uB1Eu-1/2tl/2}1 (u), -00 < U < 00. 

Next consider the departure times D,, D,. Clearly, 

D, = V+I(D,). 

Using (4.1) and the central limit theorem for the regenerative sequence {V,} 
(see the observations in Theorem 5) we may prove the next result. Let 

B 2 = E{V - l-l(t, - 
tn_l)Ev}2 

Theorem 7. If Ex >, 0, O < B3 < , 

P{(D(t)- t,1Evl) u uB3qE3/2tl/ --- (u), -00 < U < 00. 

Similarly, replacing n by t, in the preceding equation, we get the following 
result. 

Theorem 8. If Ex > 0, 0 < cr <c, 

P {(D(t) - 
tEvX) < uvE3/2tx/2} 

-*c(u), -00 < U < 00. 

Finally, we take up the 'critical' case Ex =0 and obtain central limit 
theorems for I(t), W(t). Note that I(t), W(t) -- +oo as t -> oo; we show that 
both diverge at rate t1/2-a fact well known for many simpler models. Let 

B= E(V'- U')2 (it is only 
B1 

evaluated at Ex = 0). Let 

P(u) = (2/ir)1/2 exp (-y2/2) dy, u - 0. 

Theorem 9. If Ex = 0, ru, c <oo, then 

P{I(t) - uB4Et1/2t1/21} -* T(u), u ?0. 

Proof. It is easy to show that the total idle time up to the nth departure is 

-mini•,mn 
(Sm, - W1). Taking W1= =0, without loss in generality, 

(4.2) - min S, I(t) - mmin S,. 
On -D(t)-1 O•n-D(t) 
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Consider 

min S, = min tah(n)+ V, - Ui 0 5 D(t) 05n 
D(t)h(n)+ 1 th(n)+1 

which implies that 

- max 
U'(n)+I mmin S - min a,(n) 

(4.3) O9n: O(t) On O(t) 
O-n 

O(t) 

max Vh(n)+l. OSn D(t) 

Now, 
maxoln•_D(O) 

U(,.)+1 
= maxlnh(D(,))+l U, and hence (since t-'h(D(t)) 

-- E1', by Theorem 5) (4.3) implies that 

(4.4) t-1/2 min S- mmin at)) 0. 0;O 
n__D(t) 05n:_5h(D(t)) 

Since minomn am, (uncentered) obeys a central limit theorem [12], it is not 

very hard to show, using (4.4) and (4.2), that 

(4.5) lim inf P{I(t) : uB4E-1/2t1/2} P W(u), u 
-0. t---30-0U 

I 
! P U) 

Treating the other half of the inequality in (4.2) similarly, we get the 
theorem. 

Theorem 10. If Ex = 0, Ou, ov <oo, then 

P{W(t) ? uB4E-1/2t1/2"} -~ (u), u ?0. 

Proof. Consider (3.14): 

W(t) = 
(WN(t)+l 

+ 
VN(t)+1- (t - s(t)))+. 

Since 0 t - 
s(t)- 

t -•1• 
t U', it follows that 

(4.6) t-/2(t - s(t))4 0. 

Using (3.2) we may write 

(4.7) WN(t)+1+ VN(t)+1= aN,(t) 
- min Si N X + 

VN()+1. 
tN'(t)+l 

As in (3.18), using finiteness of Ru, rv, we find that 

(4.8) t-1/2 
) 

, t-1/2 VN(t)+l 0 0. 
tN'(t)+ 1 

Next, since t-XN(t) 
-- 

iEu1, like t-1D(t) in Theorem 9, 

(4.9) t-1/2 min S,- 
min - 0. 

So0-n 
_N(t) 

Owns•h(N(t)) | 
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On queues in discrete regenerative environments 861 

But as h(N(t)) = N'(t), (3.14), (4.6)-(4.9) show that 

(4.10) lim PW(t) utl/2} = lim a(,,- min a 
utl/2 t--oo t-->oo On--- SN'(t) 

We now use a variant of a familiar combinatorial trick. We have 

(t)- min m a 
u = P am- mm ain u; U t< U 

)O-n-N'(t) 
m=0 

0<n-m 
i=1 j=1 

Consider (U,, V,), (Us, V2), ... , (U', V."). These are independent, identi- 

cally distributed, pairs. Take them in the reverse order, i.e., permute this 

collection as (U1, VI), 
(U•_I, V_1)," , (Ut, Vi). Then 

m m+1 

P am - minm a•n _u; U <5 t< U' 
0.-j-=1 ji=1 

m m+1 

=PP max an' u; UI <t< U; 
On--m i=1 j=1 

and summing over m, 

(4.11) P aN( )- mm 
an 

-u= P1 max 
aC:u5 

. 

(t) 
0--.<_n--<N'(t) 

0 U1= 

(0;-_--N'(t) The rest of the proof is as in the previous theorem. 

All the preceding results are new for the replacement and breakdown 
models. Evaluations of B3, B4 and ov may be found in [3]. 

Before ending, we turn again to light traffic theory, and fill in the gaps in the 

proofs of Theorems 4 and 5. 

Lemma 1. If Ex < 0, ,rv < ,o t-1/2W(t) O, n-1/2Wn P- 
0 as t, n -- +oo, 

respectively. 

Proof. The first is almost proved in the previous theorem. As there, we have, 
under the hypothesis, (see (4.10) and (4.11)), for any 8>0 

lim P{ W(t) t1/2} = lim P max a tl/2 = 0 t -oo t -oo 0 -n N--N'(t) 

since maxo0nN,(,) a, grows to sup a,, which is finite. 
To prove the second, consider (3.2). Proceeding as in the previous theorem 

we may show that 

lim P{W ? 8n'1/2}= limP ah(,)- mm a8in n1/2 n--.oo n-oo O ih(n) 

=lim Pam P a- lim 
a• nXn /2; ~<t+. 

n- 
m=o 

Oj~-n 
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862 K. BALAGOPAL 

Permute in reverse order the i.i.d. triples (U', V', 
tl), 

(U', V, t2- 
t), ... , (U, V, t _- tm) to get 

P 
am.- 

mmin a 8n 1/2; tm <r< tm+l= PI max a n 1/2; t n<tm+1l1 
OJLSOSm 

.Os<j<m 

The rest of the proof is as above. 

Remark 1. For the GIG/1 (and many other) models, W(t) and W, have 

proper limiting distributions as t, n -- +oo when Ex <0. And this, of course, 
implies the conclusion in Lemma 1. We may therefore expect that for our 
model too, at least this much is true without any additional conditions. For the 
semi-Markov model this can be established provided that the total number of 

types of customers is finite (as e.g. in [19], [22]); for the replacement model, 
provided the number of services given by each replacement is bounded (see [3] 
for details). Unfortunately, it appears difficult to establish it generally. This 
does no harm to Theorem 4, since the auxiliary condition ou,, av <oo is any- 
how required there, but the same cannot be said of Theorem 5. Obviously, the 
condition v <oo ought to be irrelevant then (for instance, the corresponding 
result for the G/G/1 model, Iglehart [17], does not require finiteness of 
service-time variance). 

5. The second of two queues in series: light traffic theory 

Consider two queues in series; the first is G/G/1 and the second has the 

departures from the first as input, a general service distribution at a single 
server working to a first come first served rule, and infinite queue capacity. 

Let C denote a generic 1-busy cycle duration, I, a 1-idle period duration, 
and N the number of services given during a 1-busy period, where the prefix 1 
refers to the first queue. We use the following facts about these quantities (see 
e.g. Iglehart [17], Lemma 2.3). Let A-1 and g'l denote the mean interarrival 
and service times to the first queue. We assume throughout that A < 

fl, 
i.e., 

the first queue is in light traffic. 

Lemma 2. 

E(I) = E(N)(A -1 - 1) 

E(C)= E(N)A-1 

E(N), E(C) and E(I) are all finite. 

Hereafter, we shall write EN for E(N). Let G denote the service-time 
distribution at the second server. We define input to it in the following manner: 
let N1, N2, ? ? 

be the number of services given in the 1-busy cycles numbered 
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1, 2, 
? ? 

. For each n ? 0, at the time of commencement of the (n + 1)th 1-busy 
cycle (at the time of entry of customer numbered 

En-1 N! + 1 to the first queue), 
we introduce a fictitious customer who proceeds directly to the second queue 
and queues up. His service requirement there is (identically) zero. Clearly, this 
does not alter either the virtual waiting time or the idle time in the second 

queue-only the queue length and departure processes. 
Let to = 0; t, = 

•"=1 Nj + n, n 1. U,,+1 is the duration from the commence- 
ment of the (n + 1)th 1-busy cycle to the first departure from the first queue 
during the (n + 1)th 1-busy cycle (it is actually the first service duration); 

Ut,+2, 
* * 

Ut+,_- give the interdeparture times from the first queue during the 

(n + 1)th 1-busy cycle; and U,+, is the (n + 1)th 1-idle period duration. 
The customers numbered 

t, 
+ 1 are fictitious; so we take V,,+1 0; and 

Vt+2, 
* * 

, V-+, are obtained by sampling randomly 
N,+I 

times from a popula- 
tion with distribution G. It is now clear that, since busy period initiation is a 
recurrent event for the G/G/1 queue, {U,, V,} is a regenerative sequence, with 

regeneration epochs {t,, n 
_ 0}. 

Let C-1' and IL•2 be the mean (finite) and variance of G, Ak2, the variance of 
the interarrival times to the first queue. Let o2(C) U2(N), be the variances of C 
and N, and o(C, N) their covariance. 

Lemma 3. EU= A-1EN, Ev= I21EN. 

Proof. EU = E{(tn11 UJ}; and as explained above, 
-"11 

U. is nothing but the 

(n + 1)th 1-busy cycle duration. By Lemma 2, then, Eu = A-1EN. And 

Ev=E{ V = 0+ E(tn+1 - t1 - 1) 
=21 

E Itn+1 2 

Remark 2. The first two moments of C and N play an important role in the 
analysis. We note that when the input to the first queue is Poisson, they are 
easily evaluated, using the well-known functional equation of Takacs [26]. We 
get 

EN = 
(1-- 

Xpl1)-1 

'2(N) = (k2L(2) + hX'1)(1- h- 11)-3 

c2(C) = (1(2) + xkj-3)(1 _- 
X/-1)-3 

+ k-2 

and 

o(C, N)= xA(L4( + )(1_ -1-3 

where 
2l' 

is the variance of the first server's service time. 

Theorem 11. The second queue is stable iff A 
<-t2* 
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Proof. By Lemma 3, Ex =EN(I•-A'- 1'), and since E <oo, the assertion 
follows from Theorem 1. 

Consider W,: it gives the waiting time of the nth fictitious customer, i.e., the 
virtual waiting time at the second server at the start of the (n + 1)th 1-busy 
cycle. It can be regarded as the part of the first n 1-busy cycles' load still to be 
cleared by the second server at the start of the (n + 1)th 1-busy period. 

Theorem 2 gives us the following result. 

Theorem 12. If A 
I2, N - +oo and if A < I2, W, converges in distribu- 

tion to a finite-valued random variable. 

The form of the limit is also given there but is not of much use. 

Similarly, D(t) gives the number of 1-busy cycle loads completely cleared by 
the second server up to time t. 

Theorem 13. t-1D(t) -+ E1 min (A, IL2) a.s. and, if A < I2, 2-(C)< 00, 

P{(D(t)- tAE 1) ? 
uatl/2} -_ +D(u), -00 < u < 0o, 

where a2 = or(C)A3E 3. 

Proof. By virtue of Theorem 3 and Lemma 3, it is only necessary to note 
that r u= or(C). 

We note that, here and in all the central limit theorems to follow, in the case 
of Poisson input (to the first queue), the finiteness condition on the norming 
term is equivalent to 12) <. 

Next consider the second server's idle time, I(t). Theorem 4 and Lemma 3 
above give us the following result. The evaluation of B1 is straightforward, if 
tedious. 

Theorem 14. t-'I(t) -+ max (0, 1- ApI21) a.s. and if A < IL2, o(N), o(C) and 
(2) < 00 

P{(I(t) - t(1 - AILx2)) _ ubtl/2}1_ +(u), -o0< u <o0, 

where b2 = 2AI(2) + AE-1~E 2(T22(N) + A2T2(C))- 2AEL22E-lt(N, C). 

Lastly, consider the process of departures from the second queue (and hence 
the system), {D(t), t 

_0}. 
We cannot directly use Theorem 6, for the fictitious 

customers would then get included. We shall therefore give a different proof. 

Theorem 15. t-'D(t) -+ min (A, IL2) a.s. and if A < I2, or(C), or(N) < o, then 

P{(D(t) - At) 
- 

uctl/2} 
-- 

F(u), -00< u < oo, 

where c2 - (2) 3 
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Proof. Let DI denote the time of arrival to the second queue of the nth 
actual customer, W•a) his waiting time there and V(') his service time. Then, 
even though {D,} is not regenerative, we still have 

(5.1) n-l'D--+ max (A-' -1) == A-1 a.s. 

and if A(2) <oo, then 

(5.2) P{(D- nAi-1) u(A(2))1/2 
)1/21-} 

_~ (u), -00< U <00 

(Equations (3.22) and (3.24), particularized to the G/G/1 queue). And 
Dn, 

the nth (actual) customer's departure time from the second queue, satisfies: 

(5.3) D '= D + W"' + Vn . 

Now, W)-'= W(D'), 
where W, as before, refers to the virtual wait in the 

second queue. We capitalize on the fact that W is not affected by the 
introduction of fictitious customers. Consequently, (3.17) and (5.1) imply that 

n-1D() -_ max (A-1', 
21) 

which implies, as before, that t-1D(t) -- min (A, 2*). 
For the central limit theorem, all we need, in view of (5.3) and (5.2) is that 

n-1/2W(D") 
- O. From (3.14), 

(5.4) W(D) = (WN(D')+, + VN(D')+, -(Dn-s(DD)))+. 

Now, D'- s(DI) is not larger than the time between the start of the 1-busy 
cycle during which the nth customer gets his service (at the first server) and his 

departure from the first queue; it is, therefore, not larger than the total 
duration of the 1-busy cycle during which the nth customer gets his service, 
which latter quantity has a proper limiting distribution as n -- +oo. Hence 

(5.5) n-1/2(D- s(D')) P 0. 

The remaining two terms in (5.4) may be treated as in Theorem 10, to get 
the analogue of (4.10) there, with 

W(D') 
in place of W(t), and 

N'(D') 
in place 

of N'(t). So consider, for 8 > 0, 

P{aN (- min 
a 

m>Sn1/2 OP--m-< 
N'(D)) 

r•0 

r r+1 

a,- min a> Sn 
1/2; 

D< 
, 

U 
r= O mrj=1 j=1 

Vr r+1 

= P 1a, - min am > 8n1/2; N <n? 
N- r=0 O-mt-r i=1 j=1 

(to see the validity of this, observe that Z1=1 US is the time of starting of the 
13 
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(r + 1)th 1-busy cycle, and i=, NJ is the number of services given during the 
first r 1-busy cycles) 

~ P{a( 
- min 

am>Sn; 
1/2t 

n+r<t+1< 
The proof is now finished using the same interchange as in Lemma 1. 

6. Heavy traffic theory 

Theorems 6 and 8 are immediately reproduced. 

Theorem 16. If A > ,2, V(C), (N) and L2) < 

P{(W(t)- t(A21- 1)) ubtl/2} D(u), -00< u <oo, 
where b2 = AL (22) + AE-,12 2(o2 (N) + X2r2(C)) - 2X2L2E-io(N, C). 

Theorem 17. If A > IL2, -T(N), I~) 

P{(D(t) - tEN1IL2) upt1/2} - (u), -00< u < o 

where 
p2== 2EN2 ( (2 + ENl12(N)). 

Next consider the departure process {D(t)}. We cannot directly use Theorem 

7, but our job is almost as easy. We have 

D(a) = + I(D(a) 
j=1 

and since I, like W, is invariant under the introduction of fictitious customers, 
(4.1) still holds, and so we get the following result. 

Theorem 18. If A > 2, L2 < 

P{(D(t) - 
tt) _ uqtl/2}-- )P(u), -oo < u <oo, 

where q2 = (22) 3. 

In the critically heavy traffic case, we have a further result. 

Theorem 19. If A = IL2, o-(C), o(N), 2)< 

P{W(t) 5 urtl/2} -~ (u), 
u_ 

0 

P{I(t) 5 urtl/2} -- IW(u), u 0 

where r2 (2)+ A-1ENo2(N) + A2(C)- 
2EN'o(N, 

C). 

Remark 3. We could complicate the model without much trouble. For 
instance, it may be that the customers who have zero waiting time at the first 
server take extra service at the second. More generally, we could introduce any 
sort of dependence between the 2-service times of customers served in a single 
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On queues in discrete regenerative environments 867 

1-busy cycle, and still retain the formal analysis intact. Only, the evaluations of 
the constants B1, B2 etc. in terms of the 1-busy cycle quantities may no longer 
be possible. 

7. Utilisation factor for m queues in series 

Our general analysis, unfortunately, is restricted to the second of two queues 
in series: the output of the second queue is not regenerative. We could try to 

pick those points at which both a 1-busy cycle and a 2-busy cycle are initiated 
(the latter, of course, by a fictitious customer) but there is no guarantee that 
this will generate a recurrent event. 

But there are two important results that used only the strong limit for the 

input (t-'N(t) -- A) and not its full regenerative nature, and since this limit (in 
light traffic) re-produces itself at the output (t-'D(t) -- A), these results are 

capable of generalization. 
Consider then m queues in series. Let D,(r) be the time of the nth 

customer's departure from the rth queue; D,(t), the number of departures from 
the rth queue up to time t. Let I,(t) be the rth server's idle time up to time t. 
Let {V,(r), n 1}, the service times at the rth server, form an i.i.d. family with 
finite mean L,-1. We could treat all possible combinations of light and heavy 
traffic at each server, but shall deal only with the case of 'stability' at each 
server, i.e., A i,, r = 1, 2, ? ? , m. 

Theorem 20. If A _, r = 1, 2, ? ? ?, 
m, then 

t-1D,(t) -- A 

and 

t-lI(t) -- 1- A(0 1 -1 A a.s. 

for r=, 2, , m. 

Proof. We know the result to be true for r = 1 (even r = 2, for that matter). 
We shall prove the general result by induction. Suppose it to be true for the 
(r - 1)th queue. Let W,(r) denote the nth customer's waiting time at the rth 
server. Then 

W,(r)=Sn-(r)- min Si(r) 
Osjin--l 

where 

Sm.(r) = V(r) 
-ODm 

+ 1(r 
- 

1), 
m 

_-> 
1; So(r)= 0. 

j=1 

As a consequence of the induction hypothesis, 

n-lSn_l(r) 
~-,-'_l--1 

a.s. 
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and since the limit is 50 (cf. Lemma 1 and the comment following it), 

n-1 min S(r) - o-1- A-1 
0Oj1n-1 

and hence 

(7.1) n-1W,(r)--+ 0 a.s. 

Now, 

D. (r) = Dn-1(r) + W,(r) + V,(r) 

so that n-'D,(r) -- A-J, which implies that 

t-1D,(t) --, A a.s. 

Let W,(t) denote the virtual waiting time at the rth server. Clearly, 0-5 
W,(t) 5 WW_,(,)(r) so that, by (7.1) and the induction hypothesis, 

(7.2) t-'W,(t)-+ 0 a.s. 

From the balance equation 
Dr_(t) 

S(t)= V VI-t + (t) 
i=1 

and (7.2), we get 

t-'Il(t) - 1- ht1- 
a.s. 

which completes the proof. 

In other words, the rth server's utilization factor is Agi~'. Hence, we have 
evaluated the following. 

Corollary 1. The utilization factor for a series queuing system with un- 
bounded queue capacity at each server is 

provided that A _ 5,T, r = 1, 2, , m. 

In other words, as far as utilization goes, it is as if the first server himself 

gives all the m services-though the stability criterion is much less liberal then. 
For another instance of such a 'conservation' of utilization, see [6]. 
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