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J. Appl. Prob. 16, 607-617 (1979) 
Printed in Israel 

@ Applied Probability Trust 1979 

SOME LIMIT THEOREMS FOR THE 
GENERAL SEMI-MARKOV STORAGE MODEL 

K. BALAGOPAL,* Regional Engineering College, Warangal 

Abstract 

In this paper we treat the general version of the semi-Markov storage model, 
introduced first by Senturia and Puri: transitions in the state of the system occur 
at a discrete sequence of time points, described by a two-state semi-Markov 

process. An input occurs at an instant of transition to state 1 and a demand for 
release occurs at an instant of transition to state 2. 

Assuming general distributions for all the variables involved, we show that 
the dam contents just after the nth input converges properly in distribution as 
n -- oo under conditions of stability; likewise that after the nth demand. We also 
show that the demand lost due to shortage of stock, accumulated over instants 
of demand as well as over time, obeys a strong law and a central limit theorem. 

STORAGE SYSTEM; CONTENTS AFTER INPUT; DEMAND; DEMAND LOST; MARKOV 

RENEWAL THEORY; LIMITS IN DISTRIBUTION 

1. Introduction 

Senturia and Puri [11], [12] introduce and study the following storage model: 

inputs and demands occur at discrete time points { T,, n 0}, only one of the two 

being possible at any instant. J, = 1 or 2 according as an input or a demand 
occurs at time TL and the sequence {T,, J,, n i 0} is a Markov renewal process 
with state space [0, cc) x {1, 2}. Let Z(t) be the contents of the dam at time t. We 
use the constructive definition in [12]: if n is such that TL t < T,,,, 

fZ(Tn-)+In if J - 1 
(1.1) z(t) 

if 

max (0, Z ( Tn-)- D,) if Jn = 2 

(we have changed the notation to make it more suggestive); In, of course, is the 

input, if any, at time T, and D, the demand, if any. Let 

Hj(t)= P{Tn.,+1- Tn t, Jn =j I Jn = i}, i,j 1,2, t 
_0, 

be the semi-Markov kernel of {T,, J }; let pj = Hi (-+ oc) (we do not assume that 

H,1(t) can be written as pi,H;(t), as do Senturia and Puri; to begin with, we 
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608 K. BALAGOPAL 

assume only that Hi(0) = 0). For notational convenience, we write p12= p, 

p21 = q, 0 < p, q < 1. {In, and {D,} are independent processes of independent and 
identically distributed (i.i.d.) non-negative random variables; their means are 3 
and a, respectively, both finite. 

Senturia and Puri tackle the problem under two distinct sets of assumptions 
(apart from the one mentioned above), both involving exponentiality of some of 
the distributions involved and study the distribution of Z(t), [11], [12] and of the 
time to first emptiness [12]; also, without assuming any special form for the 

distributions, they obtain limit theorems for {Z(t)} [11]. 
We wish not to make any distribution assumptions and hence proceed with a 

'sample function' analysis. Part of the outcome is a number of limiting results 

concerning the demand 'lost' due to non-availability of stock. This quantity is of 

importance and appears to have been largely neglected in probabilistic storage 
theory which concentrates mostly on contents and the time to first emptiness. 
Most models, of course, assume linear output at unit rate and then demand lost 
is precisely the dry time; and when inputs form an i.i.d. family arriving in a 
renewal process, the identification with the GI/G/1 queue provides interesting 
limiting results concerning the accumulated dry time (for instance, Hooke [7] 
shows that the accumulated dry time is asymptotically normally distributed); but 
when the input process is more complex (e.g. when inputs form a Markov chain, 
Lloyd and Odoom [8], [9]) such a convenient identification with queuing models 

may not be possible. 
The technique used in this paper appears to have rather wide applicability to 

general queuing and storage models; in the last section, we shall apply it to a 

generalisation of the model of Lloyd and Odoom referred to above. 

2. Some results from Markov renewal theory 

We shall need some results from Markov renewal theory and shall provide 
them in this section 

Suppose S,, = 0, S. = 
E 

'• 
Xi, n 

_ 1, {S., J,, n 
- 

0} a Markov renewal process 
taking values in (- o, + c)o) N, where N is the set of natural numbers or a 
subset thereof. Suppose that it is irreducible, ergodic (meaning that {J.}-is 
irreducible and ergodic, cf. I(inlar [5]) and denote by {nr,, i E N} the stationary 
measure of {J4}. Let E,(X) = 

E•ENE(X 
I Jo = i) 7i,, 

the stationary average of X; 
for i E N fixed, let {t,(i), n 

_> 1} be the 'times' of successive entry of {J.} to 
state i, i.e., t,(i)= inf{m > 0: Jm = i} and, for n > 1, t,(i)= 

t_1-(i)+ 
inf{m > 

0: 
J_,1(+m 

= i}; define to(i) 0 and let Y,(i)= •''>()+ , X;,n n 1. We shall 
make repeated use of the following facts: 
(2.1) (i) For n 

_ 
0, the post-t,(i) process {St,o(i)+m - St<), J(i)+m, m 

= 
0} is inde- 

pendent of the pre-t,(i) process {Sm, J, m 
= 

t,(i)}; and for n 
= 

1, the post-t,(i) 
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Some limit theorems for the general semi- Markov storage model 609 

process has the same law as {S,, J,, m 0, Jo = i}; in particular, { Y(i), n - 1} is 
a family of independent variates, distributed identically for n 2. 

(ii) For n 
__ 

2, E{Y,(i)}= 7i-'E,(X) if ET(IX!)< c. 

(iii) Let B2(i)= E{[Y,(i)- t,(i)E,(X)]21 Jo= i}. It is finite for one i iff it is 
finite for all iE N; and B2(i)r, is independent of i. 

We also have the following result. 

Theorem 1. If E, (I X I)< x, 

(2.2) (a) n-'S, = n-' J X,-- E,(X) w.p.1 
j=1 

and if, in addition, B(i)< o, 

(2.3) (b) P{So - nE,(X)-_ 
uB(i)ir /2n -- (u), - < u <xO 

where F is the standard normal distribution function. 

(i) is just the strong Markov property applied to Markov renewal sequences; 
and we shall not prove the rest as that can be done by standard techniques (see 

e.g. the solidarity theorems and ergodic theorems for Markov chains, Chung [4]). 
From (2.2), we may also deduce the following: (see e.g. [3]) 

(2.4) n-' min Sj -- min(0, E, (X)) w.p.1. 

3. The semi-Markov storage model 

As in Section 2, let t,,(i), i = 1,2, be the 'time' of nth entry of {Jm} to state i. 
We bring over also the rest of the notation introduced there. Write Z(T -) = 

Z,, n > 1 (so that Z, = Z(O)), Z,",()- = Z,,(i), n R 1, i = 1,2. In descriptive terms, 

Z, (1) is the contents just after the nth input, and Z,(2) that after the nth release. 
We first show that these two quantities have limiting distributions under a 
certain 'stability' condition. 

From (1.1), it follows that 

(3.1) 
Z,,+ 

= max (0, Z, + 
I,,C,(1)- 

DnC,(2)) (w.p.1) 

where C,(i) is the indicator of the event that J, = i. 
Let X = InC,(1)- DnC,n(2), n -> 1; then {S,,J,,n ?- 0} is a Markov renewal 

process, with 7, = q(p + q)-', 2rz= p(p 4-q)-'; E,(X)= (qp - pa)(p + q)-' (the 
condition E,(X 1)< x is satisfied since P, a <c), E(Y,(1))= (qp - pa)q-', 

E(Y, (2)) = (qp - pa )p -', n 
> 

2. Let ao(i) = 0, a, (i) = f 
,, 

Y;(i), n >1 i = 1 . 

Then {a,(i), n ? 0} is a (delayed) random walk. Finally, let I',= I,(), D,', = Dr,(2), 
the amounts of the nth input and demand, respectively. We use 4 to denote 

convergence in distribution and - to denote identity in distribution. 
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610 K. BALAGOPAL 

Theorem 2. The processes {Zn(i), n -> 1}, i = 1,2 converge properly in dis- 
tribution iff qp - pa < 0 and if so 

(3.2) Z, (1)-4 sup (an (1) + 1"+2) n tO 

and 

(3.3) Z,, (2) 4 sup (a, (2)) 
n•O 

for all initial contents Z(O). 
Proof. We prove only the first assertion. From (3.1), 

(3.4) Z,,+ = max (0, Z, + X,)= (Z, + X,). 

Taking n = t,(1), and using the fact that the R's are non-negative and working 
backwards from (3.4), we get (we omit (1) in writing t,(1) etc.): 

(3.5) 
Z,,(1) 

= max (0, S, n - St-, S, - SI , _ n - ,S, - SZ-1, S, - 
S,, + 

Z,(1)) 
= max (I', an, - an_, + I'_,, - , an, - a2 + 12, a, - a, + Z,(1)) 

(3.6) 

_ 
max (0, an, - an_,, - ..., an, - a,)-- max (0, a, - - -, a,,n). 

If qp3 - pa > 0, E(Y,(1)) _O 
and hence max (0, a, -, a,_,)-- 

sup,,=oan 
= + 00 

w.p.1 so that Z,(1)4 + w. 
Now suppose qp - pa < 0. Going back to (3.6) we observe that the families 

{Rk, 
tr-_ 

< k 
= 

t,, I,,} 
1 < r 

- 
n are independent and have the same law and are 

hence 'exchangeable'. Taking then in the reverse order, 

(3.7) Z,(1) - max (I, a1 + I, ... , an-2+ I', a,_, + Z,(1)). 

Since E(Y,(1)) <0, a,_, + 
Z,(1)-- 

-- as n---> , and hence from (3.7), 

Z,(1)-4 sup (a, + 
I'+2); n~O 

since, further, n-'I'---O, n-'(a, + I'+2)-- E(Y2(1)) <0, so that the supremum 
above is finite; hence the convergence is proper. 

We shall now turn to a study of the demand 'lost' due to shortage of stock on 
hand. Going back to (3.4), consider (Z, + X,)- (the negative part). It is clearly 
zero unless n = t,,(2) for some m (necessarily less than n) and L,, = 

(Zn(2) 
Xt,(2))->0 iff part of the n th demand is lost and then L, equals the 

demand lost. We may therefore write: 

Z, (2) = 
Z1,(2)+ X,(2)+ L, = Z1,(2)-1 + X,(2)- + Xt,(2)+ L, 

t (2) 

== Z,,-(2) + X + L,, = Z,,-(2) + Y,, (2) + L,. 
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Some limit theorems for the general semi-Markov storage model 611 

Hence 

(3.8) Z, (2) = Z(0)+ an(2)+ L,. j=1 

7=, Li is the total amount of the first n demands that is lost due to shortage of 
stock. Let 3' = Var(I), a'= Var(D). 

Theorem 3. 

(3.9) (a) n- ~ Li -+ max (0, p-'(pa - qp)) w.p.1 
i=1 

and 

(b) if qp - pa < 0, a',3' < •, 

P{ Lj - np '(pa 
- 

q3p) 
unl/2o}*dP(u), 

- <u 

where o2 = qp -'' + qp -2 2(2- p - q) + '. 

Proof. From (3.4) it follows that 

(3.10) Z'+, = S~ - min (S, - Z(0)) 
17._j < n 

and hence, by (2.2) and (2.4), 

n--'Z, --> max (0, (p + q) -'(qP - pa)) w.p.1. 

Using this in (3.8), we get (3.9). 
The central limit result also follows easily from (3.8) since {a,(2)} is a 

random walk to which the classical central limit theorem applies, and 

n-1/2Z,(2) -40 (stochastic convergence) when qp - pa < 0, as a consequence of 

(3.4). It remains to show that o-2 = Var(Y, (2)), and that is only tedious. 

Until now the distributions H,; have not explicitly come into the picture since 
we have been working in the discrete set of transition epochs. We shall now 
move to continuous time; let L(t) be the total amount of demand lost during 
[0, t]. Let 

Mi(t)= supf{n 0: T,,(o, : t}, i = 1,2, 

M(t)= sup {na O: T, 
-i 

t}, tE 0. 

Then 

(3.11) L(t)= :C L;. 
j=l 
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612 K. BALAGOPAL 

Let 

) ' = tdH, (t) , i, = 1,2, k 1; 
,= 

0 

0?k) = 0•~+ 0(k 

For notational convenience we omit the superscript when k = 1. We assume 
hereafter that 0, < 0. 

Theorem 4. 

(3.12) (a) t-'L(t)-- max (0, (qO, + p02)-l(pa - qf)) w.p.1 

and 

(b) if qp - pa < 0, a', B', 1S', 0 2)< 2 , 

P{L (t) - t (q1 + p02)-l(pa - q 13 ) ut1/2q/2(qO1 + 
p02)-1aO"} -F(u), 

where a' is given by 

(')2= pq -1a' + a 2pq -2(2 - q) + 3' + P2 - 2paq -1 - 2P38q -(qO1 + p02) 

(3.13) + 28aq -2(qO12 + p021 + 2p022) + 2q -22[q202' + pqO2')+ 202(qO12 + p022)] 

where 8 = (qO, + p02)-l(q3 - pa). 

Proof. 
(a) Since t-'M(t)-> (qO1 + pO2)-'(p + q) (Q'inlar [5]), (3.11) and (3.9) are easily 

seen to imply (3.12). 
(b) To prove Theorem 4(b) we need some auxiliary results which are of 

interest in themselves. The proofs can be simplified using the independence of 
the basic processes but we shall not do so, with a view to facilitating generalisa- 
tions (see concluding remarks). A wet period is defined as an interval of time 

during all of which the system is non-empty. 

Lemma 1. The total number of wet periods is finite iff qp - pa > 0. 

Proof. The total number of wet periods is finite iff Z, > 0 for all sufficiently 
large n; i.e., (by (3.10)), iff S, > minl:j<, (Si, - Z(0)) for all large n, which implies 
that {Sn} has an a.s. finite minimum; if qp - pa < 0, E(Y,(2))-< 0 and hence 
lim 

inf__. S, -<lim inf, __a, (2) = - o, a contradiction. If q - pa > 0, (2.2) im- 
plies that Sn + 0 w.p.1, so that S, > - Z(0) for large enough n, which implies 
that Z, > 0 for all large enough n. 

We note an important fact: since {S,} can decrease only at epochs of release, 
its successive minima coincide with those of {an,(2)}. 

This content downloaded from 203.200.35.13 on Tue, 29 Apr 2014 09:29:11 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Some limit theorems for the general semi-Markov storage model 613 

Suppose {W,,, n 
- 

1} are the transition epochs that mark the end of dry 
periods; if Z(0) = 0, W, is the epoch of the first input, i.e., W, = t,(1). In any 
case, W, is a stopping time for {S,, J,} and {W,n - W,, Jw, n > 1} is a Markov 
renewal process; and since Jw - 1, { W,, n - 1} is a (delayed) renewal process. 
We shall denote the increments to it by W. 

A wet cycle is a wet period followed by a dry period. If Z(0) = 0, the initial dry 
period will be called the first wet cycle. Let Vn be the time at which the nth wet 

cycle ends. Then, as with {W,}, {V,, n }l is a (delayed) renewal process. 
Increments to it will be denoted by V (V, refers to continuous time, whereas W, 
refers to the embedded discrete transition epochs; in fact, V,, = T,). 

Lemma 2. If qp - pa 50, E(W) and E(V) are finite iff qp - pa <0. 

Proof. Let W* denote a random variable distributed as the number of the 
transition epoch at which a wet period starting with contents zero (and J 
necessarily in state 1) ends. Then, W* - inf {n: Z,, = 0}, is finite by Lemma 1. 
Let to(2)= 0, h(n)= supf{m 0: t,,(2) n}. 
Then, from (3.10), 

P(W* > n) = P(S, > 0, S2 >0, , S, > 0) 

= P(h(n) = 0)+ P(a, > 0, - -, ah(, )> 0; h (n) > 0) (ai = a, (2)) 

= P(h (n) 0) + Y P(a > 
0,... 

? * a, > 0, t,(2) 
- 

n < tr+(2)). 

Summing over n, and interchanging the order of the second summation, 

E(W*)= P(h(n)=)+= 0) + P(a , 
>0,".,ar >0,tr(2)-5 n < t+,1(2)) 

n=O r=l n=r 

= C P(h(n) = 0)+ C P(a, > 

0," 

. , ar > 
0)E(tr,+(2) 

- tr(2)) 
n=0 r= 

by independence of the pre- and post-t,(2) processes, (see (2.1) (i)). Hence 

(3.14) E(W*)= E P(h(n)=0)+ (m - 1)p-'(p + q) n=0 
where m is the average of the first (weak) descending ladder epoch for the 
random walk {a,(2)}; the first sum in (3.14) is the mean number of steps in the 
first passage of {J,,} from state 1 to state 2 and is finite; and m < o iff 

E(Y,(2)) <0 (Feller [6]), i.e., qpf - pa <0. Also, the mean of W- W* is in any 
case finite since it is the number of steps in the first passage of {J, } from state 2 to 
state 1. The first assertion of the lemma is proved; the second may be proved 
likewise. 
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614 K. BALAGOPAL 

Proof of Theorem 4(b). We have the conservation relation: 

M(t) M(t) 
Z(t) = IjCj;(1)- DjC(2)- L (t) 

(3.15)= Sm,,)+ L(t). 

Now, Z(t) is not larger than the total input during the wet cycle running at 
time t; and it is an easy matter, using Smith's [13] renewal theorem, to show that 
this latter quantity has a proper limiting distribution as t -- o if E(V)< cc, i.e., 
(by Lemma 2) if qp - pa < 0. Hence t- 

/2Z(t)-- 
0 (for the special cases treated 

by Senturia and Puri this follows from the fact that Z(t) has a proper limiting 
distribution as t-- oo). 

Now, by definition of M,(t), tM,(,(1)-? M(t), and SM(,) = SM(,)- a,(,) + a,,(,) 
(we omit (1) from a,(1), t,(1), etc). 

Consider 

ISM (t)- am,(,) 
.I 

fa Ixi 
j = t~f,() + 1 

again, using the strong Markov property, (2.1) (i), and the renewal theorem we 

may show that this quantity has a proper limiting distribution as t -- cc since 

E(Tt,(j)I Jo = 1)< c. Hence t- 
/2(SM,) 

- aM,(,))-E40. It therefore suffices, by (3.15), 
to show that Theorem 4(b) is true with L(t) replaced by - aM,(,,). Now 

aM,(,) - t(qO, + p02)-'(qp - pa) 
M1(t) 

(3.16) = E [ Y - (T, - 
T,,,) (qO, + p02)-'(q1f - pa)] 

j=1 

+ 
(T,,,,, 

- t) (q1, + p02)-'(qf - pa). 

Denote the summand in the first term of (3.16) by Kj. Since 

E(TI, - T,,_,)= q-'(p + q)(p + q)-'(qO, + 
p02)= q-'(qO1 + p02), 

(see (2.1)(ii)), E(K1j)= 0. Its variance can be seen to be (o-')2. As a consequence 
of the renewal theorem, 

t-1/2(TtM,,()- t)--4 O, 
and hence, by (3.16), it is sufficient to concentrate on I ''K,. 

Let t* be the integer part of (q01 + p2)-4'qt. Since t-'M,(t)-- q(qO6 + p02)-, we 
may use the same technique as Chung ([4], p. 100) to show that 

t- K;C 
Kj- 

K; 
-- 0. 11 
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Some limit theorems for the general semi-Markov storage model 615 

Since 

P . K 
= ,uo't1/2q1/2 

(q 
O1 -1'/2 - 2 (u) as t -- 

by the classical central limit theorem for the i.i.d. sequence {Kj}, the proof is 

complete. 

Remarks. The model may be generalised to allow dependence between the 

sojourn times {T, - 
T,,-1}, inputs {}I, and demands {D,}. For instance we may 

assume that { T - Tn,_, I,, D,, Jr,} forms a Markov renewal sequence. A glance at 
the proofs of our results shows that they are worded sufficiently generally to be 
valid verbatim in this general case too; the only casualties are the explicit 
evaluations for E,(X) and the norming constants o-, o' in the central limit 
results. 

4. A storage model in a Markovian environment 

Lloyd and Odoom [8], [9] and Ali Khan and Gani [1] have made a detailed 

study of the following storage model: the model is in discrete time; inputs 
{In, n : 1} form a finite Markov chain with state space N, a subset of the natural 
numbers. Demand is unit and is supplied if the contents are not zero. 

Generalising the model we assume that demands {D,, n > 1} form an i.i.d. family 
of positive integer-valued random variables independent of the input Markov 
chain (Pakes [10] takes Dn - M, a constant), and obtain a limit theorem for the 

(accumulated) demand lost. 
Let Z, be the contents just before the nth input and release. Then 

(4.1) Z,,+, = (Zn + In - Dn) = (Zn + X,,)+, Xn = In - D,, n 1. 

Let So = 0, S, = •,= X1, n 
= 

1; then {S,, In, n 0} is a Markov renewal process 
(Io is the initial state for the input Markov chain), and {Zn+,, I,, n 

_ >0} is a 
Markov chain. We assume that it is irreducible. The stationary distribution of 

{In} is denoted by {ir,, i E N}. 
Let Ln = (Zn + Xn)-. It is the demand lost at 'time' n. We wish to prove results 

analogous to Theorem 4 for {Ln}. We require a preliminary lemma. Let 

E(D)-= d < . 

Lemma 3. {Zn} is a stochastically bounded family if 1J1Nj7Tj < d. 

Proof. Suppose first that D, =< D for all n, D a constant. Then the irreducible 
Markov chain {Z,,n+I, In} is ergodic, by Theorem 5 of Balagopal [2], and hence 

{Z, } is stochastically bounded. For the general case, let D', = min (D, D,). Then 
D 

',, 
D,, monotonically as D -- oo so that E (D ',) also increases to E (D,), by the 

monotone convergence theorem. Choose D so that 
>j-rr1 

< E(D',). Define Z' 
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616 K. BALAGOPAL 

using D' in place of D.. Then {Z'} is stochastically bounded, by what precedes 
and since, for each n, ZA clearly dominates Z, stochastically, {Z.} is also 

stochastically bounded. 

Theorem 5. 

(4.2) (a) n 
L-'1 

L --max(, d- 
-EjrrJ 

w.p.1 

and 

(b) if iITj < d, E(D2) < , 
jEN 

P{, L -nd- jEN (- u -Bu<u<no j=1 jEN 

where 

(4.3) B2 = B2(i)r,, B 2(i) as defined in (2.1) (iii). 

Proof. 

(a) From (4.1) we have 

Z,n,+= Z, + L, 
+ X, = Z, + E Lj + S,. 

j=1 

(4.4) It is also.easy to show that 

Zn+i = Sn - min (Sj, - Z,). 
1:I_5j<n 

Now, 
E,r(X) 

= IENjrrj - d and hence, by (2.2) and (2.4), 

n-'Z, 
-- max (0, 

j7• r 
- d w.p.1. 

Using this and (2.2) in (4.4), we get (4.2). 
(b) By Lemma 3, n-'/2Zn 

- 0 and hence (4.3) follows from (4.4) by (2.3). We 
need only note that B < oo iff E(D2)<oo. 
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